Statistics/Concepts(+codes)

T-test ๐Ÿ‘‰ ใ€ŠOne-sample T-test (w/ python code)ใ€‹

metamong 2022. 4. 5.

๐Ÿ‘’ ์ €๋ฒˆ ์‹œ๊ฐ„์— statistics์—์„œ ๋นผ๋†“์„ ์ˆ˜ ์—†๋Š” '๊ฐ€์„ค๊ฒ€์ • TEST - Hypothesis Test'์— ๋Œ€ํ•ด ๋ฐฐ์› ๋‹ค.

 

 

Hypothesis Test: H0 & Ha - concepts

1. Hypothesis Testing? → Null Hypothesis(H0) ๐Ÿ™†‍โ™‚๏ธ 1โ–ถ Create a Hypothesis (without stating H0) โ–ท (if data gives us strong evidence that the hypothesis is wrong) we can reject the Hypothes..

sh-avid-learner.tistory.com

 

- H0์„ ์„ธ์šฐ๊ณ  Ha๋ฅผ ์ด์šฉํ•ด H0์„ ๊ธฐ๊ฐํ•˜๋Š” ๊ฒฐ๋ก ์„ ๋‚ด๋ฆฌ๋Š” hypothesis test! -

 

 

๐Ÿ™Œ ์ด๋ฒˆ ์‹œ๊ฐ„์—๋Š” ํ•ด๋‹น ๊ฐ€์„ค๊ฒ€์ • test์˜ ์ผ์ข…์ธ 't-test'์— ๋Œ€ํ•ด์„œ ๋ฐฐ์›Œ๋ณด๋ ค ํ•จ! (์—ญ์‹œ ํ†ต๊ณ„์—์„œ ๋ฐ˜๋“œ์‹œ ์•Œ์•„์•ผ ํ•˜๋Š” ๊ฐœ๋…๐Ÿค—)

 

1. T-test ๊ฐœ์š”

** t-๋ถ„ํฌ

โ‰ซ ์—ฐ์†ํ˜•ํ™•๋ฅ ๋ณ€์ˆ˜ ๋ถ„ํฌ ์ค‘ ์ •๊ทœ๋ชจ์ง‘๋‹จ์—์„œ ๋‚˜์˜จ ํ‘œ๋ณธํ†ต๊ณ„๋Ÿ‰๋“ค์˜ ๋ถ„ํฌ ์„ค๋ช… ์‹œ ํ™œ์šฉ๋˜๋Š” ๋ถ„ํฌ ์ค‘ ํ•˜๋‚˜

โ‰ซ ์ฆ‰, ์šฐ๋ฆฌ๋Š” ๋ชจ์ง‘๋‹จ์— ๊ด€์‹ฌ์ด ์žˆ๋Š”๋ฐ ํ•ด๋‹น ๋ชจ์ง‘๋‹จ์—์„œ ์ผ๋ถ€ ํ‘œ๋ณธ์œผ๋กœ ๋ฝ‘์€ ํ‘œ๋ณธ์— ๋Œ€ํ•ด์„œ ์•Œ๊ณ ์ž ํ•  ๋•Œ ์ƒ๊ฐํ•˜๋Š” ํ‘œ๋ณธ์˜ ๋ถ„ํฌ ์ค‘ ํ•˜๋‚˜๋กœ 't-๋ถ„ํฌ'๊ฐ€ ์žˆ๋‹ค~๋ผ๊ณ  ์ƒ๊ฐํ•˜๋ฉด ์ข‹์„ ๊ฒƒ ๊ฐ™์Œ

 

โ‰ซ '๋…๋ฆฝ์ธ ์ •๊ทœ๋ฅผ ๋”ฐ๋ฅด๋Š” ๋ถ„ํฌ์˜ ํ‰๊ท ์— ๊ด€ํ•œ ๋ถ„ํฌ'๋กœ ๋งŽ์ด ํ™œ์šฉ

 ํ‘œ์ค€์ •๊ทœ ํ™•๋ฅ ๋ณ€์ˆ˜ Z & chi-square ํ™•๋ฅ ๋ณ€์ˆ˜ U๋ฅผ ์„ž์Œ

→ ๊ฐ ๋ถ„ํฌ - ํ‘œ์ค€์ •๊ทœ๋ถ„ํฌ(Z) & ์นด์ด์ œ๊ณฑ๋ถ„ํฌ(U)์—์„œ ํ•˜๋‚˜์”ฉ ๋žœ๋ค์œผ๋กœ ๋ฝ‘๊ณ  ๋‘ ์ข…๋ฅ˜์˜ ํ™•๋ฅ ๋ณ€์ˆ˜๋ฅผ ์ด์šฉํ•ด ํ•จ์ˆ˜๋ฅผ ์ƒ์„ฑ!

 

โ‰ซ X = Z/root(U/k)๊ฐ€ ๋”ฐ๋ฅด๋Š” ๋ถ„ํฌ๋ฅผ ์ž์œ ๋„๊ฐ€ k(n-1)์ธ ๋ถ„ํฌ๋ผ ํ•˜๋ฉฐ ์ด ๋ถ„ํฌ๋ฅผ 't๋ถ„ํฌ'๋ผ๊ณ  ํ•จ

→ t๋ถ„ํฌ๋ฅผ ๋”ฐ๋ฅด๋Š” ํ™•๋ฅ ๋ณ€์ˆ˜๋Š” ์‹ค์ˆ˜ ์ „ ๊ตฌ๊ฐ„์—์„œ ๋”ฐ๋ฅด๋Š” ๋ณ€์ˆ˜

 

โ‰ซ ์ด t-๋ถ„ํฌ๋ฅผ ์•Œ๊ธฐ ์œ„ํ•ด์„œ๋Š” ํ‘œ์ค€์ •๊ทœํ™•๋ฅ ๋ถ„ํฌ & ์นด์ด์ œ๊ณฑ์˜ ์ž์œ ๋„๋ฅผ ์•Œ์•„์•ผ ํ•œ๋‹ค.
(ํ‘œ์ค€์ •๊ทœํ™•๋ฅ ๋ถ„ํฌ ๋ชจ์ˆ˜๋Š” ์•Œ๊ณ  ์žˆ๊ธฐ์— ์ž์œ ๋„ k๋งŒ ์•Œ๋ฉด ๋จ → ์ž์œ ๋„๋Š” ํ‘œ๋ณธ ๊ฐœ์ˆ˜ -1)

 

โ‰ซ t-๋ถ„ํฌ์˜ ์‹๊ณผ ๊ฐœํ˜•์„ ์‚ดํŽด๋ณด๋ฉด...! ๐Ÿง

 

 

→ t๋ถ„ํฌ๋ฅผ ์‚ดํŽด๋ณด๋ฉด ๊ฐ€์šด๋ฐ 0์„ ์ค‘์‹ฌ์œผ๋กœ ๋Œ€์นญ์ธ ์ข… ๋ชจ์–‘์˜ ๋ถ„ํฌ์ด๋‹ค. ์—ฌ๊ธฐ์„œ Z์ธ ํ‘œ์ค€์ •๊ทœ๋ถ„ํฌ๋ณด๋‹ค ๊ผฌ๋ฆฌ๊ฐ€ ๋‘๊บผ์šด ๊ฑธ ํ™•์ธํ•  ์ˆ˜ ์žˆ์Œ!

→ ์œ„ t๋ถ„ํฌ ์‹์— ์˜ํ•ด ์ž์œ ๋„๊ฐ€ ์ปค์ง€๋ฉด ๋ถ„๋ชจ๊ฐ€ ์ปค์ ธ ํ™•๋ฅ ๋ณ€์ˆ˜ ๊ฐ’์ด ๊ฐ์†Œํ•ด ํผ์ ธ์žˆ๋Š” ์ •๋„๊ฐ€ ์ค„๊ณ  ๊ฐ€์šด๋ฐ๋กœ ๋ชจ์ด๋ฉฐ ์ ์  ํ‘œ์ค€์ •๊ทœ๋ถ„ํฌ๋ฅผ ํ–ฅํ•ด ์ˆ˜๋ ดํ•จ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค

 

โ‰ซ t๋ถ„ํฌ๋ฅผ ๋”ฐ๋ฅด๋Š” ํ™•๋ฅ ๋ณ€์ˆ˜์˜ ํ‰๊ท ์€ 0, ๋ถ„์‚ฐ์€ k/(k-2) (๋‹จ, k ์ž์œ ๋„ > 2) 

→ ์ฆ‰ ๋ถ„์‚ฐ์ด 1๋ณด๋‹ค ํฐ ๊ฑธ ์•Œ ์ˆ˜ ์žˆ๋‹ค. ์ด๋Š” ๋ถ„์‚ฐ์ด ํ‘œ์ค€์ •๊ทœ๋ณด๋‹ค ์ข€ ๋” ํฌ๋‹ค๋Š” ๊ฑธ ๋œปํ•จ (ํ‘œ์ค€์ •๊ทœ๋ถ„ํฌ์˜ ๋ถ„์‚ฐ์€ 1์ž„! - ๊ทธ๋ž˜์„œ ๋” ํผ์ง)

 ์ž์œ ๋„๊ฐ€ ์—„์ฒญ ์ปค์ง€๋ฉด ํ‘œ์ค€์ •๊ทœ๋ถ„ํฌ๊ฐ€ ์ˆ˜๋ ดํ•œ๋‹ค๊ณ  ํ–ˆ๋Š”๋ฐ, ์ด๋ฅผ ์ˆ˜ํ•™์ ์œผ๋กœ ๋ณด์ž๋ฉด k๊ฐ€ ๋ฌดํ•œ๋Œ€๋กœ ๊ฐ€๋ฉด์„œ ๋ถ„์‚ฐ์ด 1๋กœ ์ˆ˜๋ ดํ•˜๋ฏ€๋กœ ๊ฒฐ๊ตญ์€ ํ‘œ์ค€์ •๊ทœ๋ถ„ํฌ๋กœ ์ˆ˜๋ ดํ•œ๋‹ค๋Š” ๊ฑธ ๋œปํ•œ๋‹ค

 

โ‰ซ t๋ถ„ํฌ์˜ (1-α) ๋ถ„์œ„์ˆ˜

→ ๊ฐœํ˜•์„ ๋ณด๋ฉด 0์„ ์ค‘์‹ฌ์œผ๋กœ ๋Œ€์นญ์ด๋‹ˆ๊นŒ t(0.05, 7) = -t(0.95, 7)

→ ์ฆ‰ ์ผ๋ฐ˜ํ™”ํ•˜๋ฉด t(1-α, k) = -t(α, k)

2. One-Sample T-test

[1] ๊ฐœ์š”

โ‰ซ ๊ฐ€์ •

1> ๋ชจ์ง‘๋‹จ์€ ์ •๊ทœ๋ถ„ํฌ๋ฅผ ๋”ฐ๋ฅธ๋‹ค

2> ๋ชจ์ง‘๋‹จ์˜ ๋ถ„์‚ฐ์ด ์•Œ๋ ค์ง€์ง€ ์•Š์•˜๋‹ค ๐Ÿ˜• (ํ˜„์‹ค์„ธ๊ณ„์—์„œ๋Š” ๋ชจ๋ถ„์‚ฐ์„ ๋ชจ๋ฅด๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋Œ€๋ถ€๋ถ„)

 

โ‰ซ ์šฐ๋ฆฌ๊ฐ€ ์›ํ•˜๋Š” ๊ฑด? (์ •ํ™•ํžˆ ํ•˜๊ธฐ)

'๋ชจ์ง‘๋‹จ์˜ ํ‰๊ท '

 

โ‰ซ ๊ท€๋ฌด๊ฐ€์„ค H0 = '๋ชจ์ง‘๋‹จ์˜ ํ‰๊ท (๊ด€์‹ฌ๋ชจ์ˆ˜ µ) = ํ‘œ๋ณธ์˜ ํ‰๊ท (µ0)'

 

โ‰ซ ๊ฒ€์ •ํ†ต๊ณ„๋Ÿ‰ = ํ™•๋ฅ ๋ณ€์ˆ˜ t๋ถ„ํฌ์˜ T๋ถ„ํฌ (์ž์œ ๋„๋Š” n-1) (n์€ ํ‘œ๋ณธ์ง‘๋‹จ์—์„œ์˜ ํ‘œ๋ณธ ๊ฐœ์ˆ˜)

→ ๋ชจ์ง‘๋‹จ์ด ์ •๊ทœ๋ถ„ํฌ์ด๊ณ  ๋ชจ๋ถ„์‚ฐ์ด ์•Œ๋ ค์ง€์ง€ ์•Š์€ ๊ฒฝ์šฐ (์œ„ ๋‘ ๊ฐ€์ •์— ์˜ํ•ด์„œ) ์šฐ๋ฆฌ๋Š” T๋ถ„ํฌ๋ฅผ ๊ตฌํ•œ๋‹ค!

→ ๊ฒ€์ •ํ†ต๊ณ„๋Ÿ‰ = '๊ท€๋ฌด๊ฐ€์„ค H0์ด ์‚ฌ์‹ค์ผ ๋•Œ(µ์— µ0 ๋Œ€์ž…) ๋งŒ์กฑํ•˜๋Š” T๋ถ„ํฌ' ๊ตฌํ•˜๊ธฐ

 

 

โ‰ซ ์œ ์˜ํ™•๋ฅ  & ์œ ์˜์ˆ˜์ค€์„ ์ด์šฉํ•œ ๊ฒ€์ •

 ์œ ์˜ํ™•๋ฅ (p-value) = ๊ท€๋ฌด๊ฐ€์„ค H0๊ฐ€ ์‚ฌ์‹ค์ผ ๋•Œ ๊ฒ€์ •ํ†ต๊ณ„๋Ÿ‰ T๋ถ„ํฌ์—์„œ์˜ t0(ํ‘œ๋ณธ์ž๋ฃŒ๋กœ ๊ณ„์‚ฐ๋œ t๋ถ„ํฌ์—์„œ์˜ ์œ„์น˜)๋ณด๋‹ค ๋Œ€๋ฆฝ๊ฐ€์„ค ๋ฐฉํ–ฅ(๋” ์ค„์–ด๋“œ๋Š” ๋ฐฉํ–ฅ)์œผ๋กœ ๋” ๊ทน๋‹จ์ ์ธ ๊ฐ’์ด ๋‚˜์˜ฌ ํ™•๋ฅ 

 ใ€Œp-value <= ์œ ์˜์ˆ˜์ค€ αใ€์ด๋ฉด H0๋ฅผ ๊ธฐ๊ฐํ•˜๋Š” ๊ฑธ๋กœ ๊ฒฐ๋ก !

 

<<p-value>>

 

"In null-hypothesis significance testing, the p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct."

 

→ ์—ฌ๊ธฐ์„œ์˜ p-value๋Š” ์ฃผ์–ด์ง„ ๊ฐ€์„ค์— ๋Œ€ํ•ด์„œ '์–ผ๋งˆ๋‚˜ ๊ทผ๊ฑฐ๊ฐ€ ์žˆ๋Š” ์ง€'์— ๋Œ€ํ•œ ๊ฐ’์„ 0๊ณผ 1์‚ฌ์ด์˜ scale๋กœ ๋‚˜ํƒ€๋‚ธ ์ง€ํ‘œ์ด๋ฉฐ p-value๊ฐ€ ๋‚ฎ๋‹ค๋Š” ๊ฒƒ์€ ๊ท€๋ฌด๊ฐ€์„ค์ด ํ‹€๋ ธ์„ ๊ฐ€๋Šฅ์„ฑ์ด ๋†’๋‹ค๋Š” ๊ฑธ ๋œปํ•จ!

(p-value๊ฐ€ ๋‚ฎ์œผ๋ฉด ๋‚ฎ์„์ˆ˜๋ก ์œ ์˜์ˆ˜์ค€๋ณด๋‹ค ์ž‘์„ ๊ฐ€๋Šฅ์„ฑ์ด ํฌ๋ฏ€๋กœ!)

→ ํ’€์–ด์„œ ์–˜๊ธฐํ•˜์ž๋ฉด ์šฐ๋ฆฌ๊ฐ€ ๋ฝ‘์€ sample ๋ฐ์ดํ„ฐ๋กœ ๋‚ด๋ฆด ์ˆ˜ ์žˆ๋Š” ๊ฒฐ๋ก ์œผ๋กœ '๊ท€๋ฌด๊ฐ€์„ค์ด ์šฐ์—ฐํžˆ ๋งž๋‹ค'๋ผ๊ณ  ๋งž์„ ํ™•๋ฅ ์„ p-value!

 

โ‰ซ ๊ธฐ๊ฐ ๊ฒฐ๊ณผ ๋‚ด๋ฆด ์ˆ˜ ์žˆ๋Š” ๊ฒ€์ • ๊ฒฐ๋ก  ์œ ํ˜• ๐Ÿค” (๊ฒฐ๋ก ์ด๋ฏ€๋กœ ์ฃผ์˜ํ•ด์„œ ์œ ํ˜• ๊ตฌ๋ถ„ํ•˜์ž)
(์œ ํ˜•๊ตฌ๋ถ„์€ ๋ฌธ์ œ๋งˆ์ž ์ ˆ๋Œ“๊ฐ’์˜ ์—ฌ๋ถ€ & ๋ฌธ์ œ์—์„œ ์š”๊ตฌํ•˜๋Š” ๋ถ€๋ถ„์— ๋”ฐ๋ผ ๊ฒ€์ • ๊ฒฐ๊ณผ ์œ ํ˜• ๋‚˜๋ˆŒ ์ˆ˜ ์žˆ์Œ)

 ๋‹จ์ธก ๊ฒ€์ •(one-sided t-test)์„ ํ†ตํ•ด์„œ๋Š” ๊ท€๋ฌด๊ฐ€์„ค ๊ธฐ๊ฐ ์‹œ ํ‘œ๋ณธํ‰๊ท ์ด ๋ชจํ‰๊ท ๋ณด๋‹ค ํฐ ์ง€, ์ž‘์€ ์ง€ ๋Œ€์†Œ๋น„๊ต ๊ฒฐ๊ณผ๋ฅผ ๋‚ด๋ฆด ์ˆ˜ ์žˆ๊ณ 

 ์–‘์ธก ๊ฒ€์ •(two-sided t-test)์„ ํ†ตํ•ด์„œ๋Š” ๊ท€๋ฌด๊ฐ€์„ค ๊ธฐ๊ฐ ์‹œ ํ‘œ๋ณธํ‰๊ท ์ด ๋ชจํ‰๊ท ๊ณผ ๊ฐ™๊ฑฐ๋‚˜ ๋‹ค๋ฅธ ์ง€ ๊ฒฐ๊ณผ๋ฅผ ๋‚ด๋ฆด ์ˆ˜ ์žˆ๋‹ค.

[2] ์˜ˆ์ œ

Q. ์–ด๋Š ๊ทน์žฅ์—์„œ ํŒ๋งคํ•˜๋Š” ํŒ์ฝ˜ ํ•œ ๋ด‰์ง€์—๋Š” ๋ถ€ํ’€์–ด์ง€์ง€ ์•Š์€ ์˜ฅ์ˆ˜์ˆ˜๋ฅผ ํ‰๊ท  5๊ฐœ ์ดํ•˜๋งŒ ํฌํ•จํ•˜๊ณ  ์žˆ๋‹ค๊ณ  ์ฃผ์žฅํ•œ๋‹ค. ์ด ์ฃผ์žฅ์„ ํŒ๋‹จํ•˜๊ธฐ ์œ„ํ•ด์„œ ํŒ์ฝ˜ 25๋ด‰์ง€๋ฅผ ์กฐ์‚ฌํ•˜์˜€๋”๋‹ˆ ๋ถ€ํ’€์–ด์ง€์ง€ ์•Š์€ ํŒ์ฝ˜ ๊ฐœ์ˆ˜์˜ ํ‘œ๋ณธํ‰๊ท ์ด 4.8๊ฐœ, ํ‘œ๋ณธ๋ถ„์‚ฐ์ด 0.3. ๋ถ€ํ’€์–ด์ง€์ง€ ์•Š์€ ํŒ์ฝ˜์˜ ๊ฐœ์ˆ˜๋Š” ์ •๊ทœ๋ถ„ํฌ๋ฅผ ๋”ฐ๋ฅธ๋‹ค๊ณ  ํ•  ๋•Œ, ์ด ์ฃผ์žฅ์˜ ํƒ€๋‹น์„ฑ ์—ฌ๋ถ€๋ฅผ ์œ ์˜์ˆ˜์ค€ 5% ๋ฒ”์œ„ ๋‚ด์—์„œ ๊ฒ€์ •ํ•˜์—ฌ๋ผ

 

A.

1> ๊ท€๋ฌด๊ฐ€์„ค

 ๋ชจ์ง‘๋‹จ - '๋ถ€ํ’€์–ด์ง€์ง€ ์•Š์€ ์˜ฅ์ˆ˜์ˆ˜ ์ˆ˜'์˜ ํ‰๊ท  µ = 5

→ ์ฆ‰ H0๋Š” 'ํ‘œ๋ณธ์ง‘๋‹จ ํŒ์ฝ˜ 1๋ด‰์ง€์—์„œ์˜ ๋ถ€ํ’€์–ด์ง€์ง€ ์•Š์€ ์˜ฅ์ˆ˜์ˆ˜์˜ ๊ฐœ์ˆ˜๋Š” ๋ชจ์ง‘๋‹จ์˜ ํ‰๊ท  5๊ฐœ์™€ ๊ฐ™๋‹ค'

 

2> ๊ฒ€์ •ํ†ต๊ณ„๋Ÿ‰ & ํ™•๋ฅ ๋ถ„ํฌ

→ ๊ท€๋ฌด๊ฐ€์„ค H0๊ฐ€ ์‚ฌ์‹ค์ด๋ฉด,,, ๋ชจ์ง‘๋‹จ์€ ์ •๊ทœ๋ถ„ํฌ๋ฅผ ๋”ฐ๋ฅธ๋‹ค๊ณ  ๊ฐ€์ •(์œ„ ๋ฌธ์ œ)ํ•  ๋•Œ (๋ชจ๋ถ„์‚ฐ์€ ์•ˆ๋‚˜์™€์žˆ์Œ - ๋ชจ๋ฆ„)

 ํ•ด๋‹น T๋ถ„ํฌ๋Š” ์•„๋ž˜์™€ ๊ฐ™์€ ์‹์œผ๋กœ ์“ธ ์ˆ˜ ์žˆ๊ณ  (ํ‘œ๋ณธ์ง‘๋‹จ ๊ฐœ์ˆ˜ 25๋ด‰์ง€ - n & ๋ชจํ‰๊ท  5 - µ), ํ‘œ๋ณธ์˜ ์ •๋ณด(ํ‘œ๋ณธํ‰๊ท  & ํ‘œ๋ณธ๋ถ„์‚ฐ)๋ฅผ ๋„ฃ์œผ๋ฉด ์•„๋ž˜์™€ ๊ฐ™์€ ์‹์œผ๋กœ ๋‚˜ํƒ€๋‚ผ ์ˆ˜ ์žˆ๋‹ค.

 

- T๋ถ„ํฌ๋ฅผ ํ†ตํ•ด ํ‘œ๋ณธ ์ •๋ณด๋ฅผ ๋Œ€์ž…ํ•ด์„œ ๊ตฌํ•œ ๊ฐ’ -

 

 

3> ๊ฒ€์ •

→ p-value์˜ ์ •์˜์— ์˜ํ•ด P[T<-1.8257] = 0.0401 < 0.05 (์œ ์˜์ˆ˜์ค€ α)

 

4> ๊ฒฐ๋ก 

→ p-value๊ฐ€ ์œ ์˜์ˆ˜์ค€ 0.05๋ณด๋‹ค ์ž‘์œผ๋ฏ€๋กœ ๊ท€๋ฌด๊ฐ€์„ค์ด ๊ธฐ๊ฐ๋จ

→ '๋”ฐ๋ผ์„œ ํ•œ ๋ด‰์ง€๋‹น ๋ถ€ํ’€์–ด์ง€์ง€ ์•Š์€ ์˜ฅ์ˆ˜์ˆ˜์˜ ์ˆ˜๊ฐ€ ํ‰๊ท  5๊ฐœ๋ณด๋‹ค ์ž‘๋‹ค'


3. w/ python code

ใ€Šscipy - One Sample T-test docuใ€‹

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_1samp.html

 

"Calculate the T-test for the mean of ONE group of scores. This is a test for the null hypothesis that the expected value (mean) of a sample of independent observations a is equal to the given population mean, popmean."

 

from scipy import stats

scipy.stats.ttest_1samp(a, popmean, axis=0, nan_policy='propagate', alternative='two-sided')

 

โ‰ซ a = ๊ด€์ธก์น˜ 'Sample observation'

โ‰ซ popmean = ์šฐ๋ฆฌ๊ฐ€ ๋ฐ”๋ผ๋Š” H0์—์˜ ๊ธฐ๋Œ“๊ฐ’ - ์ฆ‰ ๋ชจํ‰๊ท  'Expected value in null hypothesis'

โ‰ซ nan_policy = nan ์ฒ˜๋ฆฌ ๋ฐฉ๋ฒ• 'Defines how to handle when input contains nan' (default๋Š” nan ๊ทธ๋Œ€๋กœ return)

โ‰ซ alternative = Ha ๊ฒฐ์ •๋ฐฉ๋ฒ• - 'Defines the alternative hypothesis' (default๋Š” two-sided ์–‘์ธก๊ฒ€์ •)

- 'less'์ด๋ฉด ์ฃผ์–ด์ง„ popmean๋ณด๋‹ค ์ž‘๋‹ค๊ณ  Ha๋ฅผ ์„ธ์šธ ์ˆ˜ ์žˆ๊ณ , 'greater'์ด๋ฉด ๋” ํฌ๋‹ค๊ณ  Ha๋ฅผ ์„ธ์šธ ์ˆ˜ ์žˆ๋‹ค

 

"์ฆ‰, ์‰ฝ๊ฒŒ ๋งํ•˜๋ฉด..! ๐Ÿ˜บ '๊ด€์ธก์น˜ a๋ฅผ popmean ๋ชจ์ง‘๋‹จ ํ‰๊ท ํ•˜๊ณ  ๊ฐ™๋‹ค๋Š” ๊ฐ€์ • ํ•˜์— ๋‚˜์˜จ p-value ๊ฐ’์— ๋”ฐ๋ผ alternative๋กœ ์„ธ์šด Ha๋ฅผ ์ฑ„ํƒํ•  ๊ฒƒ์ธ ์ง€ ๋ง ๊ฒƒ์ธ ์ง€ ๊ฒฐ์ •ํ•œ๋‹ค'๋ผ๊ณ  ๋งํ•  ์ˆ˜ ์žˆ๋‹ค!"

 

โ‰ซ ํ•จ์ˆ˜ ๊ฒฐ๊ณผ ๊ฒ€์ •ํ†ต๊ณ„๋Ÿ‰ t๊ฐ’๊ณผ p-value ์ด๋ ‡๊ฒŒ ๋‘ ๊ฐœ๊ฐ€ return๋œ๋‹ค

 

์˜ˆ์‹œ>

Q. ๋™์ „ ๋˜์ง€๊ธฐ๋ฅผ ํ•œ๋‹ค๊ณ  ๊ฐ€์ •ํ•ด๋ณด์ž. ํ•œ ๋ฒˆ ๋˜์งˆ ๋•Œ ์•ž๋ฉด์ด ๋‚˜์˜ฌ ํ™•๋ฅ ์ด 0.6์ด๋ผ๊ณ  ํ•  ๋•Œ, ๋™์ „์„ ๊ฐ๊ฐ 10๋ฒˆ / 100๋ฒˆ / 1000๋ฒˆ ๋˜์ง„ ๊ฒฐ๊ณผ ์ด ํ•ฉ์ณ์„œ ์•ž๋ฉด์ด ๋‚˜์˜ฌ ํ™•๋ฅ (ํ•ด๋‹น ์ดํ•ญ๋ถ„ํฌ)์˜ ํ‰๊ท ์ด ์œ ์˜์ˆ˜์ค€ 5% ๋ฒ”์œ„ ๋‚ด์—์„œ 0.5๋ผ๊ณ  ๋งํ•  ์ˆ˜ ์žˆ๋Š” ์ง€๋ฅผ ๊ฒ€์ •ํ•˜์—ฌ๋ผ

 

A)

1> ๊ท€๋ฌด๊ฐ€์„ค H0 '๋™์ „์„ ์—ฌ๋Ÿฌ ๋ฒˆ ๋˜์ง„ ๊ฒฐ๊ณผ ์•ž๋ฉด์ด ๋‚˜์˜ฌ ์ด ํ™•๋ฅ ์ด 0.5์ด๋‹ค'

 

2> ttest_1samp method ์‚ฌ์šฉํ•˜๊ธฐ

 

print(stats.ttest_1samp(np.random.binomial(n = 1, p = 0.6, size = 10), .5))
print(stats.ttest_1samp(np.random.binomial(n = 1, p = 0.6, size = 100), .5))
print(stats.ttest_1samp(np.random.binomial(n = 1, p = 0.6, size = 1000), .5))

#returns
#Ttest_1sampResult(statistic=1.3093073414159542, pvalue=0.22286835013352013) 10๋ฒˆ ๋˜์งˆ ๋•Œ
#Ttest_1sampResult(statistic=1.8207158484808839, pvalue=0.07167088885580167) 100๋ฒˆ ๋˜์งˆ ๋•Œ
#Ttest_1sampResult(statistic=5.8501734426276215, pvalue=6.650107077235998e-09) 1000๋ฒˆ ๋˜์งˆ ๋•Œ

 

3> ๊ฒฐ๋ก 

โ‰ซ 10๋ฒˆ & 100๋ฒˆ ๋˜์ง„ ๊ฒฐ๊ณผ ์•ž๋ฉด์ด ๋‚˜์˜ฌ ์ด ํ™•๋ฅ ์€ 0.5๋ผ๊ณ  ํ†ต๊ณ„์  ์œ ์˜์„ฑ ๋ฒ”์œ„ ๋‚ด์—์„œ ๋งํ•  ์ˆ˜ ์žˆ๋‹ค.

(p-value๊ฐ€ 0.05๋ณด๋‹ค ํฌ๋ฏ€๋กœ ๊ท€๋ฌด๊ฐ€์„ค์„ ๊ธฐ๊ฐํ•  ์ˆ˜ ์—†์Œ)

 

โ‰ซ ํ•˜์ง€๋งŒ 1000๋ฒˆ ๋˜์ง„ ๊ฒฐ๊ณผ ์ด ํ™•๋ฅ ์€ 0.5๋ผ๊ณ  ํ†ต๊ณ„์  ์œ ์˜์„ฑ ๋ฒ”์œ„ ๋‚ด์—์„œ ๋งํ•  ์ˆ˜๋Š” ์—†๋‹ค (p-value๊ฐ€ 0.05๋ณด๋‹ค ์ž‘์Œ)

 

โ—Ž ์ดํ•ญ๋ถ„ํฌ์— ์˜ํ•ด ์•ž๋ฉด ๋˜์งˆ ํ™•๋ฅ ์ด 0.6์ด๋ฏ€๋กœ 1000๋ฒˆ ๋˜์งˆ ๋•Œ 0.6์ธ ํ‰๊ท ์— ์ˆ˜๋ ดํ•œ๋‹ค๊ณ  ์•Œ๋ ค์ ธ ์žˆ๋‹ค.

์ด๋ฅผ one-sample t-test๋ฅผ ํ†ตํ•ด p-value๋กœ ๊ฒ€์ •ํ•  ์ˆ˜ ์žˆ๋‹ค. โ—Ž

 

print(stats.ttest_1samp(np.random.binomial(n = 1, p = 0.6, size = 1000), .6))
#Ttest_1sampResult(statistic=0.9743300127314252, pvalue=0.3301285675518827)

 

โ‰ซ p-value๊ฐ€ 0.05๋ณด๋‹ค ํฌ๋ฏ€๋กœ 0.6์ธ ํ‰๊ท ์— ์ˆ˜๋ ดํ•œ๋‹ค๊ณ  (๊ท€๋ฌด๊ฐ€์„ค - ์•ž๋ฉด์ด ๋‚˜์˜ฌ ์ด ํ™•๋ฅ  0.6 - ๊ธฐ๊ฐ๋˜์ง€ ์•Š์Œ) ๋งํ•  ์ˆ˜ ์žˆ์Œ!


 

* ์ธ๋„ค์ผ source) https://kennethrfaro.com/capabilities

* ์ถœ์ฒ˜1) https://en.wikipedia.org/wiki/P-value

* ์ถœ์ฒ˜2) https://blog.minitab.com/en/adventures-in-statistics-2/understanding-t-tests-1-sample-2-sample-and-paired-t-tests

* ์ถœ์ฒ˜3) https://bluehorn07.github.io/mathematics/2021/04/27/student-t-distribution.html

๋Œ“๊ธ€