Visualizations10

seaborn plots - displot, pairplot, regplot 🤹🏻‍♀️ 강력한 시각화 library seaborn의 세 개의 그래프 displot, pariplot, regplot에 대해서 알아보는 시간을 가져보려 한다. 🍡 seaborn.displot() docu https://seaborn.pydata.org/generated/seaborn.displot.html 🍡 seaborn.pairplot() docu https://seaborn.pydata.org/generated/seaborn.pairplot.html 🍡 seaborn.regplot() docu https://seaborn.pydata.org/generated/seaborn.regplot.html 1> seaborn.displot seaborn.displot(data=None, *, x=None, .. Visualizations/Various Graphs 2022. 6. 10.
Visualization - Graphs summarized 🤫 데이터분석에 있어서 빼놓지 말고 꼭! 알아야 할 시각화 그래프 종류들 🤫 수시로 UPDATE하며 여러 그래프들의 특징을 정리해본다 :) kind represents.. data etc. line plot trend-based (over a period of time) continuous area plot accumulated totals two or more quantities stacked / unstacked histogram frequency (x-axis: bins / y-axis: frequency) bar chart (bar graph) compare the rules of a variable at a given point in time time-series * the length of b.. Visualizations/Various Graphs 2022. 5. 2.
Data Visualization with Python (1/2) (from Coursera) 1. Introduction to Data Visualization Tools 1) Why Build Visuals? * for exploratory data analysis(EDA) * communicate data clearly * share unbiased representation of data * use them to support recommendations to different stakeholders * always remember → 'Less is more effective' → 'Less is more attractive' → 'Less is more impactive' ex) - simple / cleaner / less distracting / much easier to read .. Visualizations/Fundamentals 2022. 5. 1.
Color Scales (source from <Fundamentals of DV by Claus O.Wilke>) ☆ THREE fundamental use cases for color in data visualizations ☆ 1. as a tool to DISTINGUISH 👐 → 'distinguishing discrete items or groups that do not have an intrinsic order, such as different countries on a map or different manufacturers of a certain product' 👉 data를 서로 구분하는 용도로 색을 쓸 때는 data 간에 내재된 순서가 없을 경우이다. 순서가 존재한다면 순서가 가까운 data 간에 좀 더 유사한 색을 부여해야 하므로 data간에 서로 영향이 없을 경우 색을 고를 때 한정한다! 👉 이럴.. Visualizations/Fundamentals of DV by Claus O. Wilke 2022. 4. 18.
Coordinate Systems & Axes (source from <Fundamentals of DV by Claus O.Wilke>) *Intro "To make any sort of data visualization, we need to define position scales, which determine where in a graphic different data values are located. We cannot visualize data without placing different data points at different locations, even if we just arrange them next to each other along a line. For regular 2d visualizations, two numbers are required to uniquely specify a point, and therefo.. Visualizations/Fundamentals of DV by Claus O. Wilke 2022. 4. 9.
Intro + Aesthetics, Data Type & Scales (source from <Fundamentals of DV by Claus O.Wilke>) * Intro "Data visualization is part art and part science. The challenge is to get the art right without getting the science wrong and vice versa. A data visualization first and foremost has to accurately convey the data. It must not mislead or distort. If one number is twice as large as another, but in the visualization they look to be about the same, then the visualization is wrong. At the same.. Visualizations/Fundamentals of DV by Claus O. Wilke 2022. 3. 30.
violin plot (+seaborn) * EDA에 대해 알아보았고 EDA 과정에서 많이 쓰이는 시각화 방법 중 box plot에 대해 자세히 알아보았다. box plot (+seaborn) * 저번 EDA 개념 포스팅에서 EDA가 무엇인지 알아보았고, data 종류별 & 상황별 적절한 시각화 예에 대해서 공부했다. https://sh-avid-learner.tistory.com/entry/EDA-Exploratory-Data-Analysis EDA - Explorat.. sh-avid-learner.tistory.com ** 이젠 box plot과 매우 유사한 형태인 'violin plot'에 대해서 알아보자! → box plot과 마찬가지로 violin plot도 unimodal distribution을 갖는 continuous varia.. Visualizations/Various Graphs 2022. 3. 27.
Seaborn vs Matplotlib 👏 정리 너무 잘해놓은 GeeksforGeeks 포스팅 글 그대로 발췌 👏 👐 Data Visualization is the graphic representation of data. It converts a huge dataset into small graphs, thus aiding in data analysis and predictions. It is an indispensable element of data science that makes complex data more understandable and accessible. Matplotlib and Seaborn act as the backbone of data visualization through Python. 👍Matplotlib: It .. Visualizations/Fundamentals 2022. 3. 26.
box plot (+seaborn) * 저번 EDA 개념 포스팅에서 EDA가 무엇인지 알아보았고, data 종류별 & 상황별 적절한 시각화 예에 대해서 공부했다. https://sh-avid-learner.tistory.com/entry/EDA-Exploratory-Data-Analysis EDA - Exploratory Data Analysis 1. concepts & goals → 탐색적 데이터 분석 - 수집한 데이터를 본격적으로 분석하기 전에 자료를 직관적으로 바라보는 과정이 필요한데, 이때 EDA를 사용한다 - 데이터 분석의 한 종류로 복잡한 모 sh-avid-learner.tistory.com - 저번 EDA 포스팅 (IQR, outlier 등등 여러 수치를 알 수 있지만, mode는 알 수 없음) - → 즉 unimodal di.. Visualizations/Various Graphs 2022. 3. 25.
folium 시각화 ♣ 지도 표현 - 위치를 보여주는 시각화 library ♣ 1. code & 출력 결과 (예시) 1> 설치 !pip install folium 2> import import folium 3> folium 내의 Map & Marker method를 활용한다 - ex) code 1) map =folium.Map( location=(37.5012748,127.039625),zoom_start=14 ) mk = folium.Marker( location=(37.5012748,127.039625),popup='test1') mk.add_to(map) mk1 = folium.Marker( location=(37.5112748,127.039625),popup='test2') mk1.add_to(map) map - e.. Visualizations/Various Graphs 2022. 3. 24.