β THREE fundamental use cases for color in data visualizations β
1. as a tool to DISTINGUISH π
→ 'distinguishing discrete items or groups that do not have an intrinsic order, such as different countries on a map or different manufacturers of a certain product'
π dataλ₯Ό μλ‘ κ΅¬λΆνλ μ©λλ‘ μμ μΈ λλ data κ°μ λ΄μ¬λ μμκ° μμ κ²½μ°μ΄λ€. μμκ° μ‘΄μ¬νλ€λ©΄ μμκ° κ°κΉμ΄ data κ°μ μ’ λ μ μ¬ν μμ λΆμ¬ν΄μΌ νλ―λ‘ dataκ°μ μλ‘ μν₯μ΄ μμ κ²½μ° μμ κ³ λ₯Ό λ νμ νλ€!
π μ΄λ΄ λ, μ°λ¦¬λ qualitative color scaleμ μ¬μ©!
β 'contains a finite set of specific colors that are chosen to look clearly distinct from each other while also being equivalent to each other' → 무νν μμ μ’ λ₯κ° μλ νμ λ μλ€λ‘ λͺ¨μ¬ μλ setμ΄λ©°, μμ κ° clearνκ² κ΅¬λΆλ¨
β‘''no one color should stand out relative to the others' → μμ κ° λͺ¨λ λλ±νκ², μ¦ κ·Έ μ΄λ€ μλ νμ΄μλ μλ¨
β’ ''the colors should not create the impression of an order, as would be the case with a sequence of colors that get successively lighter. Such colors would create an apparent order among the items being colored, which by definition have no order.' → μλ‘ μμκ° λ΄μ¬λ κ²μ²λΌ 보μ΄λ μμλ€μ΄ μμ΄μλ μλ¨. μ¦ μμμ λΉμ·ν, μ’ λ μ°νκ³ μ§ν μμλ€μ΄ μμ΄μλ μλ¨
- qualitative color scale μμ -
> qualitative color scaleμ μ¬μ©ν data visualization μμλ₯Ό 보μ.
↑ λ―Έκ΅μ λ€ μ§μ <West, South, Midwest, Northeast> κ°μ μλ‘ λ΄μ¬λ μμλ μλ, μλ‘ λͺ λ°±ν discreteν μμ±μ κ°μ§λ―λ‘ ν΄λΉ μ μλ Okable Ito qualitative color scaleμ μ¬μ©νμ¬ μμμ μ§μ νλ€. μ΄λ κ² qualitative color scaleμ μ¬μ©νλ μ΄λ€ dataκ° ν΄λΉ μ§μμ μνλ μ§ ν λμ λ€μ΄μ΄!
2. to REPRESENT data values πͺ
→ 'sequential color scale' μ¬μ©
→ 'Such a scale contains a sequence of colors that clearly indicate (i) which values are larger or smaller than which other ones and (ii) how distant two specific values are from each other. The second point implies that the color scale needs to be perceived to vary uniformly across its entire range.'
β sequentialνκΈ° λλ¬Έμ μ΄λ€ valueκ° λ ν° κ°μ κ°μ§λ€λ©΄ ν΄λΉ valueλ λ μ§νκ² νμλ κ²μ΄λ€. valueμ ν¬κΈ°μ λ°λΌ μμμ μ§κ³ μμμ΄ λ¬λΌμ§λ€.
β‘ λ valueκ°μ μ°¨μ΄κ° μ’ λ μμ, μ¦ κ±°λ¦¬κ° μλ‘ κ°κΉμ΄ valueλ€μ μμμ μ°¨μ΄κ° λ μκ² ννν΄μΌ νλ―λ‘, μ 체 μμ λ²μλ₯Ό λκ³ λ΄€μ λ μμ λ³νκ° κ· μΌνκ² μ΄λ£¨μ΄μ ΈμΌ νλ€.
β’ single hue - ν μ’ λ₯μ μμμ κ°μ§κ³ μ§κ³ μ μμΌλ‘ νννλ κ²½μ°κ° μΌλ°μ μ΄λ€. / νμ§λ§ multiple huesλ₯Ό μ΄μ©νμ¬ ννλ κ°λ₯νλ€. μ΄λ΄ λλ μμ°μΈκ³μμ 보μ΄λ μ μ’ λ₯μ λ³νλ₯Ό μ΄μ©ν΄ νννλ κ²½μ°κ° λ§λ€.
- sequential color scale μμ -
> νΉν μ§μ νμ dataλ₯Ό μ΄μ©ν΄ κ° μ§μλ³ dataμ ν¬κ³ μμμ 'sequential color scale'μ μ΄μ©ν΄ mapμμ νννλ κ²½μ°κ° λ§μ λ° μλμ μμλ₯Ό 보μ. μ΄λ° mapμ choropleth mapμ΄λΌκ³ νλ€
- μ΄λ μ§μμ΄ μ κ² λ²κ³ λ§μ΄ λ²λ μ§ 'μμμ λλ'λ₯Ό ν΅ν΄ ν λμ μ μ μμ! -
π€ μ¬κΈ°μ! μ°λ¦¬λ ν κΈ°μ€μ μν΄μλ§ μμ λλκ° μ§μ΄μ§κ³ μ μμ νννλ κ²μ΄ μλ, μ λ°©ν₯, μ¦ μλ₯Ό λ€λ©΄ ν μ§μ μμ positiveμ negativeν λ λ°©ν₯μΌλ‘ λ»μ΄λκ°λ dataλ₯Ό νννκ³ μΆμ λκ° μλ€. μ΄λ΄ λλ μ€κ° μ§μ mid pointμ μ μΌ μ μ μμμ λκ³ μ΄ pointλ₯Ό κΈ°μ μΌλ‘ μ μ positive & negativeν dataλ‘ λ»μ΄λκ°λ©΄μ λ€λ₯Έ μ’ λ₯μ μμΌλ‘ κ°κ° μ§μ΄μ§κ² νννλ color scaleμ μ ννλ€.
(diverging color scaleμ΄λΌ λΆλ¦)
''In some cases, we need to visualize the deviation of data values in one of two directions relative to a neutral midpoint. One straightforward example is a dataset containing both positive and negative numbers. We may want to show those with different colors, so that it is immediately obvious whether a value is positive or negative as well as how far in either direction it deviates from zero. The appropriate color scale in this situation is a diverging color scale. We can think of a diverging scale as two sequential scales stiched together at a common midpoint, which usually is represented by a light color. Diverging scales need to be balanced, so that the progression from light colors in the center to dark colors on the outside is approximately the same in either direction. Otherwise, the perceived magnitude of a data value would depend on whether it fell above or below the midpoint value.'
- sequential color scale - diverging color scale μμ -
> positive & negative λΏλ§ μλλΌ, μ€μ λ°μ΄ν° μκ°νν λ μ΄ scaleμ μ΄λ€ λ μ°μ΄λλ©΄.. μ€κ° μ§μ μ μ€μνμ§ μμλ°, μ κ·Ήλ¨μ data λ΄μ©μ μλ €μ£Όκ³ μΆμ λ ν΄λΉ μκ°νλ₯Ό μ¬μ©νλ€. μλ μκ°ν μμλ₯Ό μ°Έκ³ νμ
- λ°€μ μ§μμ λ°±μΈμ΄ κ±°μ μκ³ , μ²μ μ§μμ λ°±μΈ μμ£ΌλΌλ λ κ°μ§ μλ―Έκ° λͺ λ°±ν μ λ¬λλ€. -
↑ μ°λ¦¬λ λ°±μΈ μΈκ΅¬ λΉμ¨μ΄ 50% μ€κ°μΈ μ§μμλ ν° κ΄μ¬μ΄ μλ€. λ°λ©΄μ λ°±μΈμ΄ κ±°μ μλ μ§μμ΄κ±°λ & λ°±μΈ μμ£Όμ μ§μ - μ¦ μ κ·Ήλ¨μΈ dataμ κ΄μ¬μ΄ λ§μΌλ―λ‘, μ΄λ΄ λ diverging color scale (sequential)μ μ¬μ©ν μ μλ€λ μ ! μμλμ.
3. to HIGHLIGHT β
→ 'There may be specific categories or values in the dataset that carry key information about the story we want to tell, and we can strengthen the story by emphasizing the relevant figure elements to the reader. An easy way to achieve this emphasis is to color these figure elements in a color or set of colors that vividly stand out against the rest of the figure. This effect can be achieved with accent color scales, which are color scales that contain both a set of subdued colors and a matching set of stronger, darker, and/or more saturated colors'
π μ£Όμ μ λ³΄λ§ κ°μ‘°νκ³ μΆμ λ μμμ μ¬μ©νκΈ°λ νλ€. μ΄ λλ accent color scalesλ₯Ό μ¬μ©ν μ μλλ°, ν΄λΉ scaleμ μμλ€μλ μ μ μμλ€κ³Ό λλλ₯Ό λμΈ μμλ€λ‘ ꡬμ±λμ΄ μλ€.
- accent color scale μμ -
> μ΄ λ, β κΈ°μ€μ΄ λλ baseline colorλ€μ μλμ μΌλ‘ μ κ² νμνκ³ κ°μ‘°νκ³ μΆμ dataμλ§ μμμ μ§νκ² νμν μ μλ€. μλλ©΄ β‘baseline colorλ€μ λͺ¨λ μμμ μμ κ³ κ°μ‘°νκ³ μΆμ dataμλ§ μ§ν μμμ μ ν μλ μλ€.
- (νλ¨) μΌμͺ½ β / μ€λ₯Έμͺ½ β‘ -
- μμ μ 리 λ! -
-- μμμ μΈκΈν λ€μν color scaleμ python μκ°ν λ°©λ²μ μΆν ν¬μ€ν μμ --
* λͺ¨λ λ΄μ© μΆμ² - μκ°νμ μ μ 'fundamentals of data visualizations' - Claus μμ μ¨ π§π₯° https://clauswilke.com/dataviz/color-basics.html#ref-ColorBrewer
* choropleth map - https://en.wikipedia.org/wiki/Choropleth_map
* μΆμ²) Brewer, Cynthia A. 2017. “ColorBrewer 2.0. Color Advice for Cartography.”
- μμμ§μ https://colorbrewer2.org/#type=sequential&scheme=BuGn&n=3
'Visualizations > Fundamentals of DV by Claus O. Wilke' μΉ΄ν κ³ λ¦¬μ λ€λ₯Έ κΈ
Coordinate Systems & Axes (source from <Fundamentals of DV by Claus O.Wilke>) (0) | 2022.04.09 |
---|---|
Intro + Aesthetics, Data Type & Scales (source from <Fundamentals of DV by Claus O.Wilke>) (0) | 2022.03.30 |
λκΈ